Start date
February
July

Campus
Mawson Lakes

Duration
4 year(s) full-time

Mode
On-campus

Program Code
LHIF

Prerequisites
SACE Stage 2 Math Methods
More info

Assumed Knowledge
SACE Stage 2 Physics
More info

Fees
AUD$ 35,900 per annum (per 1.0 EFTSL) for students enrolled in 2021

English Language Requirements
  • IELTS total [6.0]
  • IELTS reading [6.0]
  • IELTS writing [6.0]
Equivalent English qualifications (PDF)

International Admission by Country
See full entry requirements

CRICOS Code
081811E

Aim

To prepare graduates for a professional career in the electrical engineering discipline with particular emphasis on mechatronic engineering.

Content & Structure

The Bachelor of Engineering requires completion of courses totalling 144 units, and comprises a common first year across all Engineering disciplines. The first two years of the program lay the foundation of mathematics, physics, computing, signal analysis, circuit analysis, electronics communications principles, and mechanical engineering practice. In the third year, students concentrate on mechatronic systems and their dynamics, as well as taking a set of common courses in electrical machines, control systems and embedded systems.

The program provides students with the opportunity to integrate these studies into the development of mechatronic systems in areas such as power systems, transportation systems, biomedical systems, manufacturing, automation and robotics. An integrating project course is taken in the second half of the third year, which enables students to synthesise and apply the skills and knowledge accumulated throughout the program. Work-integrated learning is facilitated through the UniSA STEM Professional Practice Program, requiring students to gain at least 450 hours (60 days FTE) of skills and competencies through a range of engagement activities such as placements, internships, guest lectures, industry panels, site visits, networking and events.

Further specialist courses are offered in the final year. There is an emphasis throughout the program on preparing students for professional engineering practice and on the application of knowledge to practical engineering problems, including the application of systems engineering principles to designing and implementing complex systems. The degree develops professional engineering skills in a capstone experience project, and research abilities in an honours project, both of which spanning the full duration of the final year.

What courses you'll study

Course name Area and cat no. Units Reference  
FIRST YEAR
First Semester (Study Period 1, 2 or 3)
Mathematical Methods for Engineers 1 MATH 1063 4.5
Engineering Materials RENG 1005 4.5
Programming Concepts COMP 1045 4.5
Sustainable Engineering Practice ENGG 1003 4.5
Second Semester (Study Period 4, 5 or 6)
Mathematical Methods for Engineers 2 MATH 1064 4.5
Electrical and Electronic Systems EEET 1027 4.5
Engineering Mechanics MENG 1012 4.5
Engineering Design and Innovation ENGG 1004 4.5
SECOND YEAR
First Semester (Study Period 1, 2 or 3)
Engineering Physics PHYS 2011 4.5
Circuits and Signals EEET 1003 4.5
Mechanical Engineering Practice MENG 2009 4.5
Mathematical Methods for Engineers 3 MATH 2028 4.5
Second Semester (Study Period 4, 5 or 6)
Digital Logic Fundamentals EEET 1026 4.5
Analogue Devices and Circuits EEET 2018 4.5
Data Communications Technologies EEET 3025 4.5
Project Management for Engineers ENGG 2004 4.5
THIRD YEAR
First Semester (Study Period 1, 2 or 3)
Microcontroller Interfacing and Applications EEET 2045 4.5
Electrical Machines EEET 3032 4.5
Control Systems EEET 3046 4.5
Electromechanics EEET 2044 4.5
Second Semester (Study Period 4, 5 or 6)
Embedded System Design EEET 3048 4.5
Engineering Dynamics MENG 2014 4.5
Industrial Automation Systems EEET 3044 4.5
Design Management for Engineers ENGG 3006 4.5
FOURTH YEAR
First Semester (Study Period 1, 2 or 3)
Industrial Experience MENG 3007 0 Note(s): 2 Rule(s): 1,2
Advanced Control and Signal Processing EEET 4071 4.5
Machine Learning and Vision Systems MFET 4015 4.5
Engineering Capstone Experience A ENGG 4007 4.5
Engineering Honours Project A ENGG 4009 4.5 Note(s): 1
Second Semester (Study Period 4, 5 or 6)
Mobile Autonomous Robotic Systems EEET 4070 4.5
Integrated Industrial Actuation MENG 4019 4.5
Engineering Capstone Experience B ENGG 4008 4.5
Engineering Honours Project B ENGG 4010 4.5 Note(s): 1

Professional accreditation and recognition

This program is professionally accredited by Engineers Australia and is designed to meet the requirements for graduate membership of Engineers Australia and comparable international institutions.

Program Director

Related degrees

anchor-arrow