Start date

Mawson Lakes

4 year(s) full-time


Program Code

SACE Stage 2 Math Methods
More info

Assumed Knowledge
SACE Stage 2 Physics
More info

2022: AUD$ 35,900 per annum (per 1.0 EFTSL)

English Language Requirements
  • IELTS total [6]
  • IELTS reading [6]
  • IELTS writing [6]
Equivalent English qualifications (PDF)

International Admission by Country
See full entry requirements



To prepare graduates for a professional career in the electrical engineering discipline with particular emphasis on electrical systems, electronics, and computer systems.

Content & Structure

The Bachelor of Engineering requires completion of courses totalling 144 units, and comprises a common first year across all Engineering disciplines. The first two years of the program lay the foundation of mathematics, physics, computing, signal analysis, circuit analysis, and electronics and communication principles. In the third
year of study, students concentrate on their chosen application area, as well as a set of common courses in electrical machines, control systems, and embedded systems. An integrating project course in taken in the second half of third year, which enables students to synthesise and apply the skills and knowledge accumulated throughout the program. Work-integrated learning is facilitated through the UniSA STEM Professional Practice Program, requiring students to gain at least 450 hours (60 days FTE) of skills and competencies through a range of engagement activities such as placements, internships, guest lectures, industry panels, site visits, networking
and events.
Further specialist courses are offered in the final year. There is an emphasis throughout the program on preparing students for professional engineering practice and on the application of knowledge to practical engineering problems, including the application of systems engineering principles to designing and implementing complex systems. The degree develops professional engineering skills in a capstone experience project, and research abilities in an honours project, both of which span the full duration of the final year.

What courses you'll study

Course name Area and cat no. Units Reference  
First Semester (Study Period 1, 2 or 3)
Mathematical Methods for Engineers 1 MATH 1063 4.5
Engineering Materials RENG 1005 4.5
Programming Concepts COMP 1045 4.5
Sustainable Engineering Practice ENGG 1003 4.5
Second Semester (Study Period 4, 5 or 6)
Engineering Mechanics MENG 1012 4.5
Electrical and Electronic Systems EEET 1027 4.5
Mathematical Methods for Engineers 2 MATH 1064 4.5
Engineering Design and Innovation ENGG 1004 4.5
First Semester (Study Period 1, 2 or 3)
Mathematical Methods for Engineers 3 MATH 2028 4.5
Electrical Circuit Analysis EEET 1003 4.5
Fundamentals of Applied Electromagnetics PHYS 2011 4.5
Software Development COMP 2034 4.5
Second Semester (Study Period 4, 5 or 6)
Digital Logic Fundamentals EEET 1026 4.5
Analogue Devices and Circuits EEET 2018 4.5
Data Communications Technologies EEET 3025 4.5
Project Management for Engineers ENGG 2004 4.5
First Semester (Study Period 1, 2 or 3)
Control Systems EEET 3046 4.5
Microcontroller Interfacing and Applications EEET 2045 4.5
Electrical Machines EEET 3032 4.5
Electronic Filters and Amplifiers EEET 3049 4.5
Second Semester (Study Period 4, 5 or 6)
Embedded System Design EEET 3048 4.5
Digital Signal Processing EEET 4058 4.5
Digital Communications EEET 3028 4.5
Design Management for Engineers ENGG 3006 4.5
First Semester (Study Period 1, 2 or 3)
Industrial Experience MENG 3007 0 Note(s): 3 Rule(s): 1,2
Engineering Capstone Experience A ENGG 4007 4.5
Engineering Honours Project A ENGG 4009 4.5
Advanced Digital and RF Systems EEET 3047 4.5
Telecommunication Networks EEET 5147 4.5 Note(s): 1
Second Semester (Study Period 4, 5 or 6)
Engineering Capstone Experience B ENGG 4008 4.5 Note(s): 2
Engineering Honours Project B ENGG 4010 4.5 Note(s): 2
Modern Communication Systems EEET 4036 4.5
VLSI Design EEET 4045 4.5

Related degrees